

Mécanismes d'interaction plasma-surface

Christophe CARDINAUD

Ecole Technologique des Plasmas Froids cnrs 17èmes journées du réseau 13-16 octobre 2024 - Carry-le-Rouet

Réseau

www.cnrs-imn.fr

Introduction

→ Gravure – Croissance de couche mince – Traitement de surface

Ecole thématique RPF 2024, Carry le Rouet 13-16 octobre

Sommaire

- Introduction
- Rappel de quelques éléments des gaz et plasmas froids basse pression
- Equilibre plasma surface => notion de gaine et bombardement ionique
- Mécanismes d'interaction neutres surface => quelques concepts
 - o Physisorption / Chimisorption
 - Cinétique d'adsorption : Langmuir / Brunauer Emett Teller
 - o Cinétique réactionnelle : unimoléculaire / Langmuir-Hinshelwood / Eley-Rideal
- Interaction ions –/surface => revue générale et pulvérisation
- Interaction plasma surface => interaction chimique assistée par les ions
- ✤ Conclusion

Nantes

Plasmas froids basse pression

Rappel de quelques caractéristiques

Δ

Gaz à basse pression

Théorie cinétique Maxwell Boltzmann distribution normalisées

$$\int_0^\infty f(v) \, \mathrm{d}v = 1 \qquad \qquad \int_0^\infty f(\varepsilon) \, \mathrm{d}\varepsilon = 1$$

$$F(v) = 4\pi \left[\frac{M}{2\pi k T_g}\right]^{3/2} v^2 exp\left[-\frac{M v^2/2}{k T_g}\right]$$

vitesse moyenne: $\bar{v} = \int v f(v) dv = \left[\frac{8 k T_g}{\pi M}\right]^2$ énergie movenne: $\bar{\varepsilon} = \frac{m \overline{v^2}}{\pi m} = \frac{3}{2} k T_c$

vitesse la plus probable:
$$\left[\frac{2 \ k \ T_e}{m}\right]^{1/2}$$

énergie la plus probable: $\frac{k \ T_e}{2}$
libre parcours moyen: $\lambda = \frac{1}{\sqrt{2}} \frac{1}{\sigma \ n}$

fréquence de collision $v = \frac{\overline{v}}{\lambda}$ densité de flux sur une paroi: $\varphi = \frac{n \overline{v}}{4} = \frac{P}{\sqrt{2 \pi M k T_g}}$

Plasma froid basse pression

Cas modèle

Plasma froid basse pression (2)

 → Système hors équilibre thermodynamique taux d'ionisation faible : 10⁻⁵ à 10⁻³ ← bilan entre taux de création et taux de perte

Neutres et ions « froids » $T_g \sim 300 - 1\ 000\ K\ (kT_g \sim 0.026 - 0.086\ eV)$ $\overline{v} \sim 400\ a\ 700\ m/s$

Densité de neutres à 300 K: 2.4 10¹⁹ – 2.4 10²² m⁻³

Electrons « chauds » $kT_e \sim 1 - 6 \text{ eV} (T_e \sim 11\ 000 - 70\ 000\ \text{K})$ $\overline{v} \sim 6\ 10^5$ à 2\ 10⁶ m/s

Densité électronique N_e: 10¹⁴ – 10¹⁸ m⁻³

Electrons: des particules (presque) comme les autres
 Equilibre thermodynamique principalement fixé par les collisions e-e
 Energie distribuée selon f(ε), généralement considérée comme MB

$$f(\varepsilon) = \frac{2}{\sqrt{\pi}} \left[\frac{1}{k T_e} \right]^{3/2} \sqrt{\varepsilon} \exp\left[-\frac{\varepsilon}{k T_e} \right]$$

Réacteur chimique à basse pression & basse température

Données pour sections efficaces:

https://www.nist.gov/pml/electron-impact-cross-sections-ionization-and-excitation-database https://fr.lxcat.net/data/set_type.php

Nantes

Université

Procédés plasmas froids

Dépôt PECVD et gravure

Nantes

Université

CNR

Procédés plasmas froids

Dépôt PECVD et gravure

Nantes

Université

CNR

Procédés plasmas froids

Dépôt Pulvérisation

*

Fig. 1. Structure zone diagram applicable to energetic deposition; the generalized temperature T^* is given by Eq. (4), the normalized energy flux E^* by Eq. (5), and t^* represents the net thickness. The boundaries between zones are gradual and for illustration only. The numbers on the axes are for orientation only – the actual values depend on the material and many other conditions and therefore the reader should avoid reading specific values or predictions.

Un système très complexe !!

Dans le plasma: multitude de réactions * => atomes, radicaux, ion (et électrons, photons)

Aux surfaces **

Toutes les espèces interagissent avec les surfaces L'interaction varie selon les conditions, de bombardement ionique de température et la nature de la surface

Principaux mécanismes

N Nantes

Université

croissance d'un film attaque chimique pulvérisation implantation greffage

Un procédé peut combiner, intentionnellement ou non, plusieurs de ces mécanismes

diffusion en volume (et réaction)

Equilibre Plasma - Surface

Notion de gaine – Bombardement ionique des surfaces

Equilibre avec une surface

Potentiel plasma – flux de Bohm

Une « réaction collective » pour maintenir le plasma

$$V_p > V_{surf}$$

valeur type : $V_p \sim 15 - 20 V$

Au voisinage de la surface :

Un champ électrique repousse les électrons et attire les ions positifs

Formation d'une gaine où $N_e < N_i = \varphi_e = \varphi_i$

Ensemble décrit par la théorie de Bohm

- gaine non collisionnelle 0
- distribution MB pour les électrons 0

→ vitesse des ions à l'entrée de gaine : $v \ge v_B = \left|\frac{m_E}{M_i}\right|$

→ flux d'ions à la paroi : $\varphi_B = N_e \left[\frac{k T_e}{M_e}\right]^{1/2}$

David Bohm

$$[k T_{-}]^{1/2}$$

drop and densities Voltage (n(x)V(x)n(x)x linear distance from the sheath D Bohm, "The characteristics of electrical discharges in magnetic fields", eds. A Guthrie and RK Wakerling (McGraw-Hill, New York, 1949) (en négligeant leur vitesse thermique initiale)

Plasma n = n

 V_p

 v_R

 V_1

Wall

V_{surf}

Sheath

Pre-sheath

n(x) = n(x) < n

exp

Equilibre avec une surface (2)

Surface isolée de la masse **

Potentiel aux bornes de la gaine il est tel que $\varphi_i = \varphi_e$ à la surface

 $V_1 - V_f = \frac{1}{2} \frac{k T_e}{e} \ln \left[\frac{M_i}{2 \pi m} \right]$

Potentiel de la surface par rapport au plasma

$V_p - V_f =$	1 k T _e	$\left[1+ln ight]$	$\begin{bmatrix} M_i \end{bmatrix}$	
	2 e		$2 \pi m$	

(en négligeant la vitesse thermique initiale des ions)

* Surface polarisée en RF

Le potentiel de la surface (V_{surf}) est modulé par la tension RF

Les électrons sont attirés par la demie période $V_{RF} > 0$ Les ions positifs par la demie période $V_{RF} < 0$

La réponse ($\varphi_i(t)$, $\varphi_e(t)$) dépend des fréquences propres

fréquence plasma des électrons $v_e = \frac{1}{2\pi} \left[\frac{e^2 N_e}{m \varepsilon_0} \right]^{1/2}$

fréquence plasma des ions $v_i = \frac{1}{2\pi} \left[\frac{e^2 N_i}{M_i \varepsilon_0} \right]^{1/2}$

	N _e , N _i (m ⁻³)	10 ¹⁴	10 ¹⁶	10 ¹⁸	
	υ _e (Hz)	9 10 ⁷	9 10 ⁸	9 10 ⁹	
Ar+	υ _i (Hz)	3 10 ⁵	3 10 ⁶	3 10 ⁷	

* Surface polarisée en RF

Université

exemple à 13.56 MHz, plasma Ar, $N_e = N_i = 10^{16} \text{ m}^{-3}$

les électrons ($v_e \sim 900 MHz$) sont sensibles à V_{RF} mais les ions Ar⁺ ($v_i \sim 3 MHz$) sont peu sensibles à V_{RF}

Surface polarisée en RF

Equilibre avec une surface (5)

Dimension de la gaine

 $S = \lambda_D \left[\frac{eV_{surf}}{kT_e} \right]^{3/4}$

En polarisation RF => valeur moyenne

$$\bar{S} = \lambda_D \left[\frac{e|V_p - V_{dc}|}{kT_e} \right]^{3/4} = \lambda_D \left[\frac{|V_p - V_{dc}|}{T_e(eV)} \right]^{3/4}$$

La gaine ne suit pas le contour d'un motif micronique

 T_e = 3 eV, V_p = 20 V, V_{dc} = -200 V

N _e (m ⁻³)	10 ¹⁴	10 ¹⁶	10 ¹⁸
λ_D (m)	10 ⁻³	10-4	10 ⁻⁵
<i>s̄</i> (m)	3 10-2	3 10 ⁻³	3 10-4

Cors UN Nantes Université

Ecole thématique RPF 2024, Carry le Rouet 13-16 octobre

Distribution en énergie des ions – polarisation RF 13.56 MHz

✤ Gaine non collisionnelle

Les ions ont une énergie modulée par la tension RF autour de $\overline{E}_i = e \left[\overline{V_p} - V_{dc} \right]$

L'étalement de la distribution reflète la réponse des ions à la fréquence RF

 $\Delta E = -$

D Kuyper, H Hopman (1990) J. Appl. Phys. **67** 1229 P Benoit-Cattin et al. (1968) J. Appl. Phys. **39** 5723

Distribution en énergie des ions – polarisation RF 13.56 MHz

Effet de la pression

Distribution en énergie – polarisation BF (25 – 400 kHz)

Université

23

1.0

0.5

0.0

-0.5

-1.0

V / Vmax

En résumé

antes

Iniversité

- Toutes les surfaces reçoivent un flux d'ions positifs
- ✤ Le flux d'ions est typiquement le flux de Bohm (gaine non collisionnelle ~ P < 0.02 mbar)</p>
- Ces ions sont accélérés vers la surface au cours de la traversée de la gaine
- La distribution en énergie des ions dépend de la pression, de la fréquence de la polarisation
- La maîtrise de l'énergie (et du flux) des ions est un point crucial dans les procédés avancés
 - => exposés de Cédric, Emilie, Gilles...

Stratégies: plasma pulsé, plasma et polarisation pulsés, ALE, ALD, HiPIMS...

Mécanismes Neutres - Surface

Présentation de quelques concepts

Notions de base

***** Taux de couverture : $\theta = n/n_s$

rapport entre la densité surfacique n d'espèces adsorbées et la densité de sites d'adsorption n_s

Notions de base

Physisorption : adsorption sans changement de structure chimique de l'adsorbat ou de la surface

Chimisorption : adsorption avec changement de structure chimique
 Liaison chimique entre l'adsorbat et la surface, formation d'un composé...

Réaction de surface : réaction chimique (formation d'un composé) ne se produisant qu'à l'interface entre un matériau et le milieu ambiant

Physisorption

✤ Interaction dipolaire entre l'espèce A et la surface → potentiel, Lennard-Jones par ex.

→ Prise en compte de la structure (périodique ?) du solide Sites d'adsorption localisés aux minima de U(x,y,z)

Temps de résidence

Nantes

Université

L'agitation thermique peut permettre à l'espèce A de passer d'un site à un autre, ou de désorber

$$\tau = \tau_0 exp\left[\frac{E_d}{kT}\right]$$

Ζ

 $\tau_0 \sim 10^{-12}$ s, période de vibration de l'espèce

Т (К)	100	200	300	400	500	600
τ (<mark>s</mark>)	3.9	2E-6	1.6E-8	1.4E-9	3.3E-10	1.2E-10
$E_{d} = 0.2$	eV					

28

Chimisorption – cas d'une espèce AB

Courbe 1 : $E_p(z)$ de physisorption de AB Courbe 2 : Energie du système A + B Courbe 3 : $E_p(z)$ d'interaction avec le substrat S

Situation bcp plus complexe, qui dépend fortement du couple adsorbat / substrat

Chimisorption vs Physisorption

Chimisorption	Physisorptic
E _c ~ 0.5 à 10 eV	E _p ~ 0.1 à 0.5 e
τ > h (@300K)	τ < μs (@300K)
Z _{eq} plus faible	Z _{eq} ~ 0.5 nm

Interaction de type liaison chimique

on

V

Interaction dipolaire

Cinétique de l'adsorption

Nantes

Université

Irving Langmuir

$$n_{i} = n_{1} P^{i-1} K^{i-1} \qquad n_{1} = k_{ads} n_{0} \tau_{0} P \exp\left[\frac{E_{d}}{kT}\right]$$
$$\Rightarrow n_{i} = c n_{0} P^{i} K^{i}, \text{ avec } c = \frac{k_{ads}}{k_{ads,i}} \frac{\tau_{0}}{\tau_{0,i}} \exp\left[\frac{E_{d}-E_{cc}}{kT}\right]$$

densité surfacique de molécules adsorbées : $n_T = \sum_{i=1}^{\Omega} i n_i$ densité surfacique de sites d'adsorption : $n_S = \sum_{i=0}^{\Omega} n_i$

taux de recouvrement :

Nantes

Université

$$\theta = \frac{n_T}{n_S} = \frac{c \, n_0 \sum_{1}^{\Omega} i \, K^i P^i}{n_0 + c \, n_0 \sum_{1}^{\Omega} K^i P^i} = \frac{c \, \sum_{1}^{\Omega} i \, K^i P^i}{1 + c \sum_{1}^{\Omega} K^i P^i}$$
$$\theta \sim \frac{c \, K \, P}{(1 - K \, P) \, [1 + (c - 1) \, K \, P]}$$

 $\sum_{1}^{\infty} Z^{i-1} = \frac{1}{1-Z}$ $\sum_{1}^{\infty} i Z^{i-1} = \frac{1}{[1-Z]^2}$ Rappel: avec Z < 1

Physisorption vs Chimisorption en gravure cryo

 Gravure sélective de Si₃N₄ / a-Si procédé cyclé plasma SiF₄-O₂ / plasma Ar

G Antoun et al. (2022) J. Vac Sci. Technol. A 40 052601

Chimisorption \rightarrow croissance d'un film SiO_xF_y Physisorption \rightarrow gravure durant l'étape plasma Ar

Réaction unimoléculaire: $A + Surface \rightarrow AS \rightarrow Produit$

adsorption: $A + Surface \rightarrow AS$ $k_{ads} (1 - \theta) \varphi_A n_s$ désorption: $AS \rightarrow A + Surface$ $k_{des} \theta n_s$ réaction: $AS \rightarrow Produit$ $k \theta n_s$

```
vitesse de réaction: v = k \theta n_s
```


36

Réaction bimoléculaire: $A + B + Surface \rightarrow AS + BS \rightarrow Produit$

Mécanisme de Langmuir-Hinshelwood (1926)

 $\begin{array}{ll} \text{adsorption: } A + Surface \rightarrow AS & k_{ads,A} \ \theta_0 \ \varphi_A \ n_s \\ \text{adsorption: } B + Surface \rightarrow BS & k_{ads,B} \ \theta_0 \ \varphi_B \ n_s \\ \text{réaction: } AS + BS \rightarrow Produit & k \ \theta_A \ \theta_B \ n_s^2 \\ \text{vitesse de réaction: } \nu = k \ \theta_A \ \theta_B \ n_s^2 \\ \end{array}$

la cinétique est généralement limitée par la réaction => $v = \frac{K_A \varphi_A K_B \varphi_B}{[1 + K_A \varphi_A + K_B \varphi_B]^2} k n_s^2$

Réaction bimoléculaire: $A + Surface + B \rightarrow AS + B \rightarrow Produit$

Mécanisme d'Eley-Rideal (1938)

adsorption: $A + Surface \rightarrow AS \quad k_{ads,A} (1 - \theta) \varphi_A n_s$ désorption: $AS \rightarrow A + Surface \quad k_{des,A} \theta_A n_s$ réaction sans adsorption: $AS + B \rightarrow Produit \quad k \theta_A \varphi_B n_s$ vitesse de réaction: $v = k \theta_A \varphi_B n_s$

$$= > v = \frac{K_A \varphi_A}{1 + K_A \varphi_A} k \varphi_B n_s$$

Nantes

Université

Irving Langmuir

désorption: $AS \rightarrow A + Surface$ $k_{des,A} \theta_A n_s$

désorption: $BS \rightarrow B + Surface$ $k_{des,B} \theta_B n_s$

Cyril Hinshelwood

Daniel Eley Eric Rideal

37

Un exemple : gravure de Si par F

Manip: Situation de post-décharge => gravure spontanée
 La vitesse de gravure est proportionnelle au flux de fluor
 La cinétique est activée thermiquement (loi d'Arrhenius)

=> cinétique « type unimoléculaire » avec réaction limitée par le flux de réactif... alors que le processus nécessite 4 F !!

Nantes

Cr

Diagrammes réactionnels – Neutres - Surface H Deutsch et al. (1989) Cont. Plasma Phys. 29 3

Un exemple : gravure de Si par F

Discussion

Adsorption unimoléculaire ? Cohérent avec résultats expérimentaux

Eley-Rideal ? $v = \frac{K_A \varphi_F}{1 + K_A \varphi_F} k \varphi_F n_{s'}$, si la cinétique n'est pas limitée par l'adsorption => $v \sim k \varphi_F n_{s'}$. $\theta = 1/4$ Modèle de Pelletier: adsorption séquentielle multicouche et gravure par $SiF_2 + SiF_2 \rightarrow SiF_4(g) + Si =>$ nécessite 2 SiF₂ voisins donc $\theta > 0,5$ Si <100> $v = \frac{[K_F \varphi_F]^2}{[1 + 2 K_F \varphi_F]^2} k n_s^2 = \frac{1}{2} \sqrt[6]{2} \sqrt[6]$ Langmuir-Hinshelwood? =3/4Bulk Si Manips de fluoration par XeF₂ Si <111> couche fluorée ~ 5 à 20 Å SiF J Yarmoff et al. (1987) Surface Science 184 389 F Mc Feely et al. (1984) Phys. Rev. B 30(2) 764 J Pelletier et al. (1987) Europhys. Lett. 4 (9) 1049 B Petit et al. (1986) Revue Phys. Appl. 21 377 Osi ۰F o ad sorption site 20 22 24 26 Electron Kinetic Energy (eV) N Nantes 40 Ecole thématique RPF 2024, Carry le Rouet 13-16 octobre Université

Exemples d'effet de réactions de surface sur le plasma

Mais aussi par les surfaces !

H. Sugai et al. (1995) J. Vac. Sci. Technol. A 13 887

Nantes

Université

G. Oehrlein et al. (1987) J. Appl. Phys. 62 662

Intensité relative F* 703.7 nm

Ecole thématique RPF 2024, Carry le Rouet 13-16 octobre

Schéma général de l'interaction neutre – surface

Interaction Ions - Surface

Et si on tenait compte des ions ???

Revue générale

Effet des ions sur la surface

migration d'atomes adsorbés $E_i \sim 0.01$ to 0.02 eVdésorption d'espèces $E_i \sim 0.1$ to 10 eVdéplacement d'atomes $E_i > 10$ eVpiégeage de l'ion $E_i > 50$ eVpulvérisation d'atomes $E_i > E_{seuil} \sim 20$ à 50 eémission d'électrons secondairesimplantation

Processus

neutralisation de l'ion, fragmentation énergie ∝ masse des fragments perte d'énergie dans le solide

 $E_i > E_{seuil} \sim 20$ à 50 eV dépend de l'état de la surface

Profondeur projetée (Rp)

profondeur moyenne atteinte par les ions simulation par logiciel SRIM, TRIM... les défauts induits s'étendent sur ~ 2.Rp

Interaction Plasma (neutres et ions) - Surface

Processus assistés par les ions

Interaction chimique assistée par les ions

Concept « fourre tout »

Formation d'une couche superficielle endommagée \rightarrow plus réactive Pulvérisation d'espèces faiblement liées: $E_{seuil}(SiF_x) \approx 20 \ eV < E_{seuil}(Si) \approx 50 \ eV$ Apport d'énergie qui induit ou accroît les réactions chimiques Désorption stimulée du produit (abaissement de l'énergie de désorption) "Nettoyage" de la surface \rightarrow meilleure interaction agent-matériau Elévation de température (dissipation d'énergie)

Hypothèse:les espèces neutres sont responsables des réactions chimiques,les ions apportent l'énergie

- => éléments considérés: flux & nature des espèces neutres,
 - flux & énergie des ions,
 - présence & rôle d'une couche de blocage

Diagrammes réactionnels – Neutres - Surface sous bomb^t. ions

Activation de l'adsorbat

H Deutsch et al. (1989) Cont. Plasma Phys. 29 3

Mécanisme adsorption – désorption sous assistance ionique

T Mayer and R Barker (1982) J. Vac. Sci. Technol. **21** 757 J Butterbaugh et al. (1991) J. Vac. Sci. Technol. B **9** 1461

Ecole thématique RPF 2024, Carry le Rouet 13-16 octobre

Nantes

Université

Modèle phénoménologique et réalité

- ✤ La surface réelle n'est pas (plus) un plan mono-atomique !
- ✤ La composition n'est pas (plus) stœchiométrique !

Y Feurprier et al. (1998) J. Vac. Sci. Technol. B **16**, 1552 Y Feurprier et al. (1997) Plasma Sources Sci. Technol. **6** 334 Y Feurprier et al. (1998) J. Vac. Sci. Technol. B **16** 1823

depth (nm)

Snapshots of the surface after a Cl⁺ fluence of 3.5 10¹⁵ ions/cm² for various bombarding ion energies.

P Brichon et al. (2015) J. Appl. Phys. 118 053303

51

Conclusion

- Interaction Plasma Surface => mécanismes complexe...
 - o importance du rôle des ions => nécessité d'avoir une idée du flux et énergie
 - modèle cinétique => importance d'identifier l'élément chimique clef
- Importance des données expérimentales => multiplier les diagnostics !
 - Plasma: OES => espèces radiatives => concentration relative, mesure temporelle absorption => espèces (produits, radicaux...) état fondamental, concentration, mesure temporelle ?
 - sonde de Langmuir => volume => V_p , V_f , N_e , T_e , FDEE, mesure temporelle sonde ionique => surface => flux, distribution en énergie, angulaire, mesure temporelle SM => espèces stables neutres et ions: produits – radicaux (ionisation près du seuil), taux de dissociation des précurseurs, distribution en énergie des ions, mesure temporelle
 - Surface (et volume): XPS => composition chimique

ellipsométrie => vitesse dépôt/gravure, pptés optiques des films, mesure temporelle MEB, MET => imagerie (surface, coupe), composition et imagerie chimique (EDX) IR et Raman => composition, structure « moléculaire » des films diffraction RX => cristallographique chimique des films

Merci de votre attention !!

